Langsung ke konten utama

Unggulan

soal dan jawaban teori relativitas

1.        Seorang pengamat di stasiun ruang angkasa mengamati adanya dua pesawat antariksa A dan B yang datang menuju stasiun tersebut dari arah yang berlawanan dengan laju vA = vB = ¾ c (c adalah cepat rambat cahaya). Kelajuan pesawat A menurut pilot pesawat B adalah…                          a.         9/16 c                          b.           8/9 c                          c.         24/25 c                          d.           4/3 c                          e.           3/2 c 2.    Panjang benda diukur pengamat yang diam = 12 m. Berapakah panjang benda itu bila diukur oleh pengamat yang bergerak dengan kecepatan 0,8 c (c = kecepatan cahaya) relatif terhadap benda? A. 12,6 m B. 12,2 m C. 9,6 m D. 7,2 m E. 6,0 m 3.    Suatu peristiwa terjadi selama 3 sekon menurut pengamat yang bergerak menjauhi peristiwa itu dengan kecepatan 0,8 c (c = kecepatan cahaya). Menurut pengamat yang diam, peristiwa tersebut terjadi selama selang waktu... A. 5,0 s B. 4,8 s C. 3

Termodinamika dan gas ideal



Termodinamika

      Termodinamika adalah cabang dari ilmu fisika yang mempelajari tentang proses perpindahan energi sebagai kalor dan usaha antara sistem dan lingkungan. Kalor diartikan sebagai perpindahan energi yang disebabkan oleh perbedaan suhu, sedangkan usaha merupakan perubahan energi melalui cara-cara mekanis yang tidak disebabkan oleh perubahan suhu. Proses perpindahan energi pada termodinamika berdasarkan atas dua hukum, yaitu Hukum 1 Termodinamika yang merupakan persyaratan hukum kekekalan energi, dan Hukum 2 Termodinamika yang memberikan batasan tentang arah perpindahan kalor yang dapat terjadi.


A.Konsep dasar dalam termodinamika

Pengabstrakkan dasar atas termodinamika adalah pembagian dunia menjadi sistem dibatasi oleh kenyataan atau ideal dari batasan. Sistem yang tidak termasuk dalam pertimbangan digolongkan sebagai lingkungan. Dan pembagian sistem menjadi subsistem masih mungkin terjadi, atau membentuk beberapa sistem menjadi sistem yang lebih besar. Biasanya sistem dapat diberikan keadaan yang dirinci dengan jelas yang dapat diuraikan menjadi beberapa parameter. Dari prinsip-prinsip dasar termodinamika secara umum bisa diturunkan hubungan antara kuantitas misalnya, koefisien ekspansi, kompresibilitas, panas jenis, transformasi panas dan koefisien elektrik, terutama sifat-sifat yang dipengaruhi temperatur.


B.Sistem termodinamika

Sistem termodinamika adalah bagian dari jagat raya yang diperhitungkan. Sebuah batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem-lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan.
Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungan:
  • sistem terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan. Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi.
  • sistem tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan. Apakah suatu sistem terjadi pertukaran panas, kerja atau keduanya biasanya dipertimbangkanh sebagai sifat pembatasnya:
    • pembatas adiabatik: tidak memperbolehkan pertukaran panas.
    • pembatas rigid: tidak memperbolehkan pertukaran kerja.
  • sistem terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut permeabel. Samudra merupakan contoh dari sistem terbuka.
Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.


C.Keadaan termodinamika

Ketika sistem dalam keadaan seimbang dalam kondisi yang ditentukan, ini disebut dalam keadaan pasti (atau keadaan sistem).
Untuk keadaan termodinamika tertentu, banyak sifat dari sistem dispesifikasikan. Properti yang tidak tergantung dengan jalur di mana sistem itu membentuk keadaan tersebut, disebut fungsi keadaan dari sistem. Bagian selanjutnya dalam seksi ini hanya mempertimbangkan properti, yang merupakan fungsi keadaan.
Jumlah properti minimal yang harus dispesifikasikan untuk menjelaskan keadaan dari sistem tertentu ditentukan oleh Hukum fase Gibbs. Biasanya seseorang berhadapan dengan properti sistem yang lebih besar, dari jumlah minimal tersebut.
Pengembangan hubungan antara properti dari keadaan yang berlainan dimungkinkan. Persamaan keadaan adalah contoh dari hubungan tersebut.

D.Hukum-hukum Dasar Termodinamika

Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu:
  • Hukum Awal (Zeroth Law) Termodinamika
Hukum awal menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya. Hukum ini dimasukkan setelah hukum pertama.
  • Hukum Pertama Termodinamika
Hukum yang sama juga terkait dengan kasus kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem. Hukum ini dapat diuraikan menjadi beberapa proses, yaitu proses dengan Isokhorik, Isotermik, Isobarik, dan juga adiabatik.
  • Hukum kedua Termodinamika
Hukum kedua termodinamika terkait dengan entropi. Tidak ada bunyi untuk hukum kedua termodinamika yang ada hanyalah pernyataan kenyataan eksperimental yang dikeluarkan oleh kelvin-plank dan clausius. Pernyataan clausius: tidak mungkin suatu sistem apapun bekerja sedemikian rupa sehingga hasil satu-satunya adalah perpindahan energi sebagai panas dari sistem dengan temperatur tertentu ke sistem dengan temperatur yang lebih tinggi. Pernyataan kelvin-planck: tidak mungkin suatu sistem beroperasi dalam siklus termodinamika dan memberikan sejumlah netto kerja kesekeliling sambil menerima energi panas dari satu reservoir termal.(sumber Fundamentals of engineering thermodynamics (Moran J., Shapiro N.M. - 6th ed. - 2007 - Wiley) Bab5). "total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya hal ini disebut dengan prinsip kenaikan entropi" merupakan korolari dari kedua pernyataan diatas (analisis Hukum kedua termodinamika untuk proses dengan menggunakan sifat entropi)(sumber Fundamentals of engineering thermodynamics (Moran J., Shapiro N.M. - 6th ed. - 2007 - Wiley) Bab6).
  • Hukum ketiga Termodinamika
Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum.

                          Gas Ideal

    Pengertian Gas Ideal Suatu gas hipotetis yang memiliki molekul yang dipantulkan satu sama lain (dalam batas-batas wadah mereka) dengan elastisitas yang sempurna dan memiliki ukuran yang diabaikan, dan di mana gaya antarmolekul yang bekerja antara molekul tidak bersentuhan satu sama lain juga diabaikan. Gas tersebut akan mematuhi hukum gas (seperti hukum Charles dan hukum Boyle) tepat pada semua suhu dan tekanan. Gas yang paling aktual yang bertindak kurang lebih sebagai gas ideal, kecuali pada suhu yang sangat rendah (ketika energi potensial gaya antarmolekul mereka relatif tinggi terhadap energi kinetik dari molekul dan menjadi signifikan), dan di bawah tekanan yang sangat tinggi (ketika molekul yang dikemas begitu berdekatan bahwa kekuatan antarmolekul jarak dekat menjadi signifikan).
Gas ideal didefinisikan sebagai salah satu di mana semua tumbukan antara atom atau molekul bersifat elastis sempurna dan di mana tidak ada kekuatan menarik antarmolekul. Sesuatu dapat memvisualisasikannya sebagai kumpulan bola sempurna keras yang bertabrakan tetapi dinyatakan tidak berinteraksi satu sama lain. Dalam gas seperti itu, semua energi internal dalam bentuk energi kinetik dan perubahan energi internal disertai dengan perubahan suhu.
Gas ideal dapat dicirikan oleh tiga variabel keadaan: tekanan mutlak (P), volume (V), dan suhu mutlak (T). Hubungan antara mereka dapat disimpulkan dari teori kinetik dan disebut    
          PV = nRT = NkT

            n = banyaknya mol
               R = Universal gas konstan = 8,3145 J / mol K
             N = jumlah molekul
             k = konstanta Boltzmann = 1,38066 x 10-23 J / K = 8,617385 x 10-5 eV / K
k = R / NA
NA = Avogadro nomor = 6.0221 x 1023 / mol
Hukum gas ideal dapat dipandang ketika yang muncul dari tekanan kinetik molekul gas bertabrakan dengan dinding wadah sesuai dengan hukum Newton. Tapi ada juga unsur statistik dalam penentuan energi kinetik rata-rata molekul-molekul. Suhu diambil harus proporsional dengan energi kinetik rata-rata ini, ini akan memanggil gagasan tentang temperatur kinetik. Satu mol gas ideal pada STP menempati 22,4 liter.
  Gas dianggap terdiri atas molekul-molekul gas yang disebut partikel. Teori ini tidak mengutamakan kelakuan sebuah partikel tetapi meninjau sifat zat secara keseluruhan sebagai hasil rata-rata kelakuan partikel tersebut. Untuk menyederhanakan permasalahan teori kinetik gas diambil pengertian tentang gas ideal, dalam hal ini gas dianggap sebagai gas ideal.
Sifat-sifat gas ideal adalah sebagai berikut.
  1.   Terdiri atas partikel yang banyak sekali dan bergerak sembarang.
  2.   Setiap partikel mempunyai masa yang sama.
  3.   Tidak ada gaya tarik menarik antara partikel satu dengan partikel lain.
  4.   Jarak antara partikel jauh lebih besar disbanding ukuran sebuah partikel.
  5.   Jika partikel menumbuk dinding atau partikel lain, tumbukan dianggap lenting sempurna.
  6.   Hukum Newton tentang gerak berlaku.
  7.   Gas selalu memenuhi hukum Boyle-Gay Lussac
sumber : https://id.wikipedia.org/wiki/Termodinamika
               http://pujasucia.blogspot.co.id/2015/03/gas-ideal.html

Komentar

Postingan Populer